1   /*
2    * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.
8    *
9    * This code is distributed in the hope that it will be useful, but WITHOUT
10   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12   * version 2 for more details (a copy is included in the LICENSE file that
13   * accompanied this code).
14   *
15   * You should have received a copy of the GNU General Public License version
16   * 2 along with this work; if not, write to the Free Software Foundation,
17   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18   *
19   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20   * or visit www.oracle.com if you need additional information or have any
21   * questions.
22   */
23  
24  /*
25   * @test
26   * @bug 4347132 4939441
27   * @summary Tests for {Math, StrictMath}.cbrt
28   * @author Joseph D. Darcy
29   */
30  
31  import sun.misc.FpUtils;
32  import sun.misc.DoubleConsts;
33  
34  public class CubeRootTests {
35      private CubeRootTests(){}
36  
37      static final double infinityD = Double.POSITIVE_INFINITY;
38      static final double NaNd = Double.NaN;
39  
40      // Initialize shared random number generator
41      static java.util.Random rand = new java.util.Random();
42  
43      static int testCubeRootCase(double input, double expected) {
44          int failures=0;
45  
46          double minus_input = -input;
47          double minus_expected = -expected;
48  
49          failures+=Tests.test("Math.cbrt(double)", input,
50                               Math.cbrt(input), expected);
51          failures+=Tests.test("Math.cbrt(double)", minus_input,
52                               Math.cbrt(minus_input), minus_expected);
53          failures+=Tests.test("StrictMath.cbrt(double)", input,
54                               StrictMath.cbrt(input), expected);
55          failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
56                               StrictMath.cbrt(minus_input), minus_expected);
57  
58          return failures;
59      }
60  
61      static int testCubeRoot() {
62          int failures = 0;
63          double [][] testCases = {
64              {NaNd,                      NaNd},
65              {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
66              {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
67              {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
68              {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
69              {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
70              {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
71              {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
72              {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
73              {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
74              {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
75              {Double.POSITIVE_INFINITY,  Double.POSITIVE_INFINITY},
76              {Double.NEGATIVE_INFINITY,  Double.NEGATIVE_INFINITY},
77              {+0.0,                      +0.0},
78              {-0.0,                      -0.0},
79              {+1.0,                      +1.0},
80              {-1.0,                      -1.0},
81              {+8.0,                      +2.0},
82              {-8.0,                      -2.0}
83          };
84  
85          for(int i = 0; i < testCases.length; i++) {
86              failures += testCubeRootCase(testCases[i][0],
87                                           testCases[i][1]);
88          }
89  
90          // Test integer perfect cubes less than 2^53.
91          for(int i = 0; i <= 208063; i++) {
92              double d = i;
93              failures += testCubeRootCase(d*d*d, (double)i);
94          }
95  
96          // Test cbrt(2^(3n)) = 2^n.
97          for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
98              failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
99                                           FpUtils.scalb(1.0, i) );
100         }
101 
102         // Test cbrt(2^(-3n)) = 2^-n.
103         for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
104             failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
105                                          FpUtils.scalb(1.0, i) );
106         }
107 
108         // Test random perfect cubes.  Create double values with
109         // modest exponents but only have at most the 17 most
110         // significant bits in the significand set; 17*3 = 51, which
111         // is less than the number of bits in a double's significand.
112         long exponentBits1 =
113             Double.doubleToLongBits(FpUtils.scalb(1.0, 55)) &
114             DoubleConsts.EXP_BIT_MASK;
115         long exponentBits2=
116             Double.doubleToLongBits(FpUtils.scalb(1.0, -55)) &
117             DoubleConsts.EXP_BIT_MASK;
118         for(int i = 0; i < 100; i++) {
119             // Take 16 bits since the 17th bit is implicit in the
120             // exponent
121            double input1 =
122                Double.longBitsToDouble(exponentBits1 |
123                                        // Significand bits
124                                        ((long) (rand.nextInt() & 0xFFFF))<<
125                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
126            failures += testCubeRootCase(input1*input1*input1, input1);
127 
128            double input2 =
129                Double.longBitsToDouble(exponentBits2 |
130                                        // Significand bits
131                                        ((long) (rand.nextInt() & 0xFFFF))<<
132                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
133            failures += testCubeRootCase(input2*input2*input2, input2);
134         }
135 
136         // Directly test quality of implementation properties of cbrt
137         // for values that aren't perfect cubes.  Verify returned
138         // result meets the 1 ulp test.  That is, we want to verify
139         // that for positive x > 1,
140         // y = cbrt(x),
141         //
142         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
143         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
144         //
145         // where y_mm and y_pp are the next smaller and next larger
146         // floating-point value to y.  In other words, if y^3 is too
147         // big, making y larger does not improve the result; likewise,
148         // if y^3 is too small, making y smaller does not improve the
149         // result.
150         //
151         // ...-----|--?--|--?--|-----... Where is the true result?
152         //         y_mm  y     y_pp
153         //
154         // The returned value y should be one of the floating-point
155         // values braketing the true result.  However, given y, a
156         // priori we don't know if the true result falls in [y_mm, y]
157         // or [y, y_pp].  The above test looks at the error in x-y^3
158         // to determine which region the true result is in; e.g. if
159         // y^3 is smaller than x, the true result should be in [y,
160         // y_pp].  Therefore, it would be an error for y_mm to be a
161         // closer approximation to x^(1/3).  In this case, it is
162         // permissible, although not ideal, for y_pp^3 to be a closer
163         // approximation to x^(1/3) than y^3.
164         //
165         // We will use pow(y,3) to compute y^3.  Although pow is not
166         // correctly rounded, StrictMath.pow should have at most 1 ulp
167         // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
168         // from pow(y,3) by more than one ulp so the comparision of
169         // errors should still be valid.
170 
171         for(int i = 0; i < 1000; i++) {
172             double d = 1.0 + rand.nextDouble();
173             double err, err_adjacent;
174 
175             double y1 = Math.cbrt(d);
176             double y2 = StrictMath.cbrt(d);
177 
178             err = d - StrictMath.pow(y1, 3);
179             if (err != 0.0) {
180                 if(FpUtils.isNaN(err)) {
181                     failures++;
182                     System.err.println("Encountered unexpected NaN value: d = " + d +
183                                        "\tcbrt(d) = " + y1);
184                 } else {
185                     if (err < 0.0) {
186                         err_adjacent = StrictMath.pow(FpUtils.nextUp(y1), 3) - d;
187                     }
188                     else  { // (err > 0.0)
189                         err_adjacent = StrictMath.pow(FpUtils.nextAfter(y1,0.0), 3) - d;
190                     }
191 
192                     if (Math.abs(err) > Math.abs(err_adjacent)) {
193                         failures++;
194                         System.err.println("For Math.cbrt(" + d + "), returned result " +
195                                            y1 + "is not as good as adjacent value.");
196                     }
197                 }
198             }
199 
200 
201             err = d - StrictMath.pow(y2, 3);
202             if (err != 0.0) {
203                 if(FpUtils.isNaN(err)) {
204                     failures++;
205                     System.err.println("Encountered unexpected NaN value: d = " + d +
206                                        "\tcbrt(d) = " + y2);
207                 } else {
208                     if (err < 0.0) {
209                         err_adjacent = StrictMath.pow(FpUtils.nextUp(y2), 3) - d;
210                     }
211                     else  { // (err > 0.0)
212                         err_adjacent = StrictMath.pow(FpUtils.nextAfter(y2,0.0), 3) - d;
213                     }
214 
215                     if (Math.abs(err) > Math.abs(err_adjacent)) {
216                         failures++;
217                         System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
218                                            y2 + "is not as good as adjacent value.");
219                     }
220                 }
221             }
222 
223 
224         }
225 
226         // Test monotonicity properites near perfect cubes; test two
227         // numbers before and two numbers after; i.e. for
228         //
229         // pcNeighbors[] =
230         // {nextDown(nextDown(pc)),
231         // nextDown(pc),
232         // pc,
233         // nextUp(pc),
234         // nextUp(nextUp(pc))}
235         //
236         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
237         {
238 
239             double pcNeighbors[] = new double[5];
240             double pcNeighborsCbrt[] = new double[5];
241             double pcNeighborsStrictCbrt[] = new double[5];
242 
243             // Test near cbrt(2^(3n)) = 2^n.
244             for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
245                 double pc = FpUtils.scalb(1.0, 3*i);
246 
247                 pcNeighbors[2] = pc;
248                 pcNeighbors[1] = FpUtils.nextDown(pc);
249                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
250                 pcNeighbors[3] = FpUtils.nextUp(pc);
251                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
252 
253                 for(int j = 0; j < pcNeighbors.length; j++) {
254                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
255                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
256                 }
257 
258                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
259                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
260                         failures++;
261                         System.err.println("Monotonicity failure for Math.cbrt on " +
262                                           pcNeighbors[j] + " and "  +
263                                           pcNeighbors[j+1] + "\n\treturned " +
264                                           pcNeighborsCbrt[j] + " and " +
265                                           pcNeighborsCbrt[j+1] );
266                     }
267 
268                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
269                         failures++;
270                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
271                                           pcNeighbors[j] + " and "  +
272                                           pcNeighbors[j+1] + "\n\treturned " +
273                                           pcNeighborsStrictCbrt[j] + " and " +
274                                           pcNeighborsStrictCbrt[j+1] );
275                     }
276 
277 
278                 }
279 
280             }
281 
282             // Test near cbrt(2^(-3n)) = 2^-n.
283             for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
284                 double pc = FpUtils.scalb(1.0, 3*i);
285 
286                 pcNeighbors[2] = pc;
287                 pcNeighbors[1] = FpUtils.nextDown(pc);
288                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
289                 pcNeighbors[3] = FpUtils.nextUp(pc);
290                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
291 
292                 for(int j = 0; j < pcNeighbors.length; j++) {
293                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
294                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
295                 }
296 
297                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
298                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
299                         failures++;
300                         System.err.println("Monotonicity failure for Math.cbrt on " +
301                                           pcNeighbors[j] + " and "  +
302                                           pcNeighbors[j+1] + "\n\treturned " +
303                                           pcNeighborsCbrt[j] + " and " +
304                                           pcNeighborsCbrt[j+1] );
305                     }
306 
307                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
308                         failures++;
309                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
310                                           pcNeighbors[j] + " and "  +
311                                           pcNeighbors[j+1] + "\n\treturned " +
312                                           pcNeighborsStrictCbrt[j] + " and " +
313                                           pcNeighborsStrictCbrt[j+1] );
314                     }
315 
316 
317                 }
318             }
319         }
320 
321         return failures;
322     }
323 
324     public static void main(String argv[]) {
325         int failures = 0;
326 
327         failures += testCubeRoot();
328 
329         if (failures > 0) {
330             System.err.println("Testing cbrt incurred "
331                                + failures + " failures.");
332             throw new RuntimeException();
333         }
334     }
335 
336 }